Structures and Unions I 307

Another method is to initialize a structure variable outside the function as shown below:
struct st_record
{
int weight;
float height;:
} studentl = {60, 180.75};
main()
{
struct st_record student2 = {53, 170.60};

.....

.....

C language does not permit the initialization of individual structure members within the template.
The initialization must be done only in the declaration of the actual variables.

Note that the compile-time initialization of a structure variable must have the following elements:
The keyword struct
The structure tag name.
The name of the variable to be declared.
The assignment operator =
A set of values for the members of the structure variable, separated by commas and enclosed
in braces.
6. A terminating semicolon.

@ Rules for Initializing Structures >

There are a few rules to keep in mind while initializing structure variables at
compile-time.

Ul.hwl\):-—‘

1. We cannot initialize individual members inside the structure template.

2. The order of values enclosed in braces must match the order of members in
the structure definition.

3. Itis permitted to have a partial initialization. We can initialize only the first
few members and leave the remaining blank. The uninitialized members
should be only at the end of the list.

4. The uninitialized members will be assigned default values as follows:

e Zero for integer and floating point numbers.
e 0’ for characters and strings. J

10.6 COPYING AND COMPARING STRUCTURE VARIABLES

Two variables of the same structure type can be copied the same way as ordinary variables. If per-
sonl and person2 belong to the same structure, then the following statements are valid:

personl = personZ;
personZ = personl;

308| Programming in ANSI C

However, the statements such as

personl == person2
personl != person2

are not permitted. C does not permit any logical operations on structure variables. In case, we need to
compare them, we may do so by comparing members individually.

Example 10.2| Write a program to illustrate the comparison of structure variables.

The program shown in Fig. 10.2 illustrates how a structure variable can be copied into another of
the same type. It also performs member-wise comparison to decide whether two structure variables
are identical.

Program
struct class
{
int number;
char name[20];
float marks;

'
main()
int x;
struct class studentl

struct class student?2
struct class student3;

{111,"Rao",72.50};
{222,"Reddy", 67.00};

student3 = student2;

student2.number) &&

x = ((student3.number ==
== student2.marks)) ? 1 : 0;

(student3.marks
if(x == 1)

printf("\nstudent2 and student3 are same\n\n");

printf("%d %s %f\n", student3.number,
student3.name,
student3.marks);

}

else
printf("\nstudent? and student3 are different\n\n");

}
Output

student2 and student3 are same

222 Reddy 67.000000

Fig. 10.2 Comparing and copying structure variables

Structures and Unions I 309

@ Word Boundaries and Slack Bytes)

Computer stores structures using the concept of “word boundary”. The size of a
word boundary is machine dependent. In a computer with two bytes word
boundary, the members of a structure are stored left_aligned on the word bound-
ary as shown below. A character data takes one byte and an integer takes two
bytes. One byte between them is left unoccupied. This unoccupied byte is
known as the slack byte.

[
o | 2 3 t
< char—>| b ~—— int -
|
slack byte

When we declare structure variables, each one of them may contain slack bytes
and the values stored in such slack bytes are undefined. Due to this, even if the
members of two variables are equal, their structures do not necessarily compare
equal. C, therefore, does not permit comparison of structures. However, we can
design our own function that could compare individual members to decide
G whether the structures are equal or not. _ J

10.7 OPERATIONS ON INDIVIDUAL MEMBERS

As pointed out earlier, the individual members are identified using the member operator, the dot. A
member with the dot operator along with its structure variable can be treated like any other variable
name and therefore can be manipulated using expressions and operators. Consider the program in
Fig. 10.2. We can perform the following operations:

if (studentl.number == 111)
studentl.marks += 10.00;

float sum = studentl.marks + student2.marks;
student2.marks * = 0.5;

We can also apply increment and decrement operators to numeric type members. For example, the
following statements are valid:
studentl.number ++;
++ studentl.number;

The precedence of the member operator is higher than all arithmetic and relational operators and
therefore no parentheses are required.

310 | Programming in ANSI C

% Three Ways to Access Members)

We have used the dot operator to access the members of structure variables. In
fact, there are two other ways. Consider the following structure:

typedef struct
{

int x;
int y;
} VECTOR;
VECTOR v, *ptr;
ptr = & v;

The identifier ptr is known as pointer that has been assigned the address of the
structure variable v. Now, the members can be accessed in three ways:

¢ using dot notation : V.X
e using indirection notation : (*ptr).x
e using selection notation : ptr —> x
@ The second and third methods will be considered in Chapter 11. J

10.8 ARRAYS OF STRUCTURES

We use structures to describe the format of a number of related variables. For example, in analyzing
the marks obtained by a class of students, we may use a template to describe student name and marks
obtained in various subjects and then declare all the students as structure variables. In such cases, we
may declare an array of structures, each element of the array representing a structure variable. For
example:

struct class student[100];

defines an array called student, that consists of 100 elements. Each element is defined to be of the
type struct class. Consider the following declaration:

struct marks
{
int subjectl;
int subject2;
int subject3;
s
main()
{
struct marks student[3] =
{{45,68,81}, {75,53,69}, {57,36,71}};

This declares the student as an array of three elements student[0], student[1], and student[2]
and initializes their members as follows:

Structures and Unions |311

student[0].subjectl = 45;
student [0] .subject2 = 65;
student[2] .subject3 = 71;

Note that the array is declared just as it would have been with any other array. Since student is an
array, we use the usual array-accessing methods to access individual elements and then the member
operator to access members. Remember, each element of student array is a structure variable with
three members.

An array of structures is stored inside the memory in the same way as a multi-dimensional array.
The array student actually looks as shown in Fig. 10.3.

student {0].subject 1 45
.subject 2 68
.subject 3 81
student [1].subject 1 75
.subject 2 53
.subject 3 69
student [2).subject 1 57
.Subject 2 36
.subject 3 : 71

Fig. 10.3 The array student inside memory

Example 10.3| For the student array discussed above, write a program to calculate
the subject-wise and student-wise totals and store them as a part of
the structure.

The program is shown in Fig. 10.4. We have declared a four-member structure, the fourth one
for keeping the student-totals. We have also declared an array total to keep the subject-totals and
the grand-total. The grand-total is given by total.total. Note that a member name can be any valid
C name and can be the same as an existing structure variable name. The linked name total.total
represents the total member of the structure variable total.

Program
struct marks

{

int subl;
int sub2;
int sub3;

int total;

312 | - ‘Programming in ANSI C

main()
{
int i
struct marks student[3] = {{45,67,81,0},

1,0
{75,53,69,0},
{57,36,71,0}};
struct marks total;
for(i = 0; 1 <= 2; i++)

{
student[i].total = student[i].subl +
student[i].sub2 +
student{i].sub3;
total.subl = total.subl + student[i].subl;
total.sub2 = total.sub2 + student[i].sub2;
total.sub3 = total.sub3 + student[i].sub3;
total.total = total.total + student[i].total;
}
printf(" STUDENT TOTAL\n\n");
for(i = 0; 1 <= 2; i++)
printf("Student[%d] %d\n", i+l,student[i].total);
printf("\n SUBJECT TOTALANP\n");
printf("%s %d\n%s %d\n%s %d\n",

"Subject 1 ", total.subl,
"Subject 2 ", total.sub2,
"Subject 3 ", total.sub3);

printf("\nGrand Total = %d\n", total.total);

Output
STUDENT TOTAL
Student[1] 193
Student[2] 197
Student[3] 164
SUBJECT TOTAL
Subject 1 177
Subject 2 156
Subject 3 221

Grand Total = 554

Fig. 10.4 Arrays of structures: Illustration of subscripted structure variables

Structures and Unions |3l3
10.9 ARRAYS WITHIN STRUCTURES e RS

C permits the use of arrays as structure members. We have already used arrays of characters inside a
structure. Similarly, we can use single- or multi-dimensional arrays of typeint or float. For example,
the following structure declaration is valid:

struct marks

{

int number;
float subject[3];
} student[2];

Here, the member subject contains three elements, subject[0], subject[1] and subject|2]. These
elements can be accessed using appropriate subscripts. For example, the name

student[1].subject[2];

would refer to the marks obtained in the third subject by the second student.

EExample 10.4| Rewrite the program of Example 10.3 using an array member o repre-
sent the three subjects.

The modified program is shown in Fig. 10.5. You may notice that the use of array name for
subjects has simplified in code.

Program
main()
{
struct marks
{
int sub[3];
int total;
}s
struct marks student[3] =
{45,67,81,0,75,53,69,0,57,36,71,0};
struct marks total;
int i,3:

for(i = 0; i <= 2; i++)
| for(j = 05 § <= 2; j++)
{ student[i].total += student[i].sub[j];
total.sub[j] += student[i].sub[j];
}tota1 .total += student[i].total;
:)r‘intf("STUDENT TOTALAN\n");

314| Programming in ANSI C

for(i = 0; 1 <= 2; i++)
printf("Student[%d] %d\n", i+1, student[i].total);
printf("\nSUBJECT TOTAL\n\n");
for(j = 0; § <= 2; j++)
printf("Subject-%d %d\n", j+1, total.sub[j]);
printf("\nGrand Total = %d\n", total.total);
}
Output
STUDENT TOTAL
Student[1] 193
Student[2] 197
Student[3] 164
SUBJECT TOTAL
Subject-1 177
Subject-2 156
Subject-3 221
Grand Total = 554

Fig. 10.5 Use of subscripted members arrays in structures

10.10 STRUCTURES WITHIN STRUCTURES .

Structures within a structure means nesting of structures. Nesting of structures is permitted in C. Let
us consider the following structure defined to store information about the salary of employees.

struct salary

{
char name;
char department;
int basic_pay;
int dearness_allowance;
int house_rent_allowance;
int city_allowance;

}

employee;

This structure defines name, department, basic pay and three kinds of allowances. We can group all
the items related to allowance together and declare them under a substructure as shown below:

Structures and Unions | 315

struct salary

{

char name;
char department;
struct

{

int dearness;
int house_rent;
int city;

}

allowance;

}

employee;

The salary structure contains a member named allowance which itself is a structure with three
members. The members contained in the inner structure namely dearness, house_rent, and city can
be referred to as:

employee.allowance.dearness
employee.allowance.house_rent
employee.allowance.city

An inner-most member in a nested structure can be accessed by chaining all the concerned struc-
ture variables (from outer-most to inner-most) with the member using dot operator. The following are
invalid:

employee.allowance (actual member is missing)
employee.house_rent (inner structure variable is missing)

An inner structure can have more than one variable. The following form of declaration is legat:

struct salary

{

se e

struct

{
int dearness;

allowance,
arrears;

}
employee[100];

The inner structure has two variables, allowance and arrears. This implies that both of them have
the same structure template. Note the comma after the name allowance. A base member can be
accessed as follows:

employeefl].allowance.dearness
employee[1].arrears.dearness

316] Programming in ANSIC

We can also use tag names to define inner structures. Example:

struct pay
{

int dearness;
int house_rent;
int city;
};
struct salary
{
char name;
char department;
struct pay allowance;
struct pay arrears;
}s
struct salary employee[100];

pay template is defined outside the salary template and is used to define the structure of allowance
and arrears inside the salary structure.
It is also permissible to nest more than one type of structures.

struct personal_record

{
struct name_part name;
struct addr_part address;
struct date date of birth;

A

struct personal_record personl;

The first member of this structure is name, which is of the type struct name_part. Similarly,
other members have their structure types.

10.11 STRUCTURES AND FUNCTIONS

We know that the main philosophy of C language is the use of functions. And therefore, it is natural
that C supports the passing of structure values as arguments to functions. There are three methods by
which the values of a structure can be transferred from one function to another.

1. The first method is to pass each member of the structure as an actual argument of the function
call. The actual arguments are then treated independently like ordinary variables. This is the
most elementary method and becomes unmanageable and inefficient when the structure size is
large.

2. The second method involves passing of a copy of the entire structure to the called function.
Since the function is working on a copy of the structure, any changes to structure members
within the function are noi reflected in the original structure (in the calling function). It is,

Structures and Unions |3l7

therefore, necessary for the function to return the entire structure back to the calling function.
All compilers may not support this method of passing the entire structure as a parameter.

. The third approach employs a concept called pointers to pass the structure as an argument. In

this case, the address location of the structure is passed to the called function. The function
can access indirectly the entire structure and work on it. This is similar to the way arrays are
passed to function. This method is more efficient as compared to the second one. :

In this section, we discuss in detail the second method, while the third approach using pointers is
discussed in the next chapter. where pointers are dealt in detail.
The general format of sending a copy of a structure to the called function is:

function_naime (structure_variable namel:

The called function takes the following form:

data_type function name(struct_type st_name)

return(expression);

}

The following points are important to note:

l.

N

The called function must be declared for its type, appropriate to the data type it is expected to
return. For example, if it is returning a copy of the entire structure, then it must be declared as
struct with an appropriate tag name.

. The structure variable used as the actual argument and the corresponding formal argument in

the called function must be of the same struct type.

. The return statement is necessary only when the function is returning some data back to the

calling function. The expression may be any simple variable or structure variable or an
expression using simple variables.

. When a function returns a structure, it must be assigned to a structure of identical type in the

calling function.

. The called functions must be declared in the calling function appropriately.

xample 10.5| Write a simple program to illustrate the method of sending an entire

| Example 105

A program to update an item is shown in Fig. 10.6. The function update receives a copy of the
structure variable item as one of its parameters. Note that both the function update and the formal
parameter product are declared as type struct stores. It is done so because the function uses the
parameter product to receive the structure variable item and also to return the updated values of

item.

structure as a parameter to a function.

The function mul is of type float because it returns the product of price and quantity. However,
the parameter stock, which receives the structure variable item is declared as type struct stores.

318] Programming in ANSIC

The entire structure returned by update can be copied into a structure of identical type. The state-
ment

item = update(item,p_increment,q_increment);
replaces the old values of item by the new ones.

Program

/* Passing a copy of the entire structure */
struct stores
{

char name[20];

float price;

int quantity;
}s
struct stores update (struct stores product, float p, int g);
float mul (struct stores stock);

main()

{
float p_increment, value;
int g_increment;

struct stores item = {"XYZ", 25.75, 12};

printf("\nInput increment values:");

printf(" price increment and quantity increment\n"});
scanf("%f %d", &p_increment, &q_increment);

/* ____________________________ */
item = update(item, p_increment, gq_increment);

/* ____________ T L Tl */
printf("Updated values of item\n\n");
printf("Name : %s\n",item.name);
printf("Price : %f\n",item.price);

printf("Quantity : %d\n",item.quantity);

/* ____________________________ */
value = mul{item);

/* ____________________________ */
printf{"\nValue of the item = %f\n", value);

}

struct stores update(struct stores product, float p, int q)
{

product.price += p;

product.quantity += q;

return(product);

Structures and Unions |319

float mul(struct stores stock)

{
}

return(stock.price * stock.quantity);

Output

Input increment values: price increment and quantity increment
10 12

Updated values of item

Name : XYZ

Price : 35.750000

Quantity : 24
Value of the item = 858.000000

Fig. 10.6 Using structure as a function parameter

You may notice that the template of stores is defined before main(). This has made the data type
struct stores as global and has enabled the functions update and mul to make use of this definition.

10.12 UNIONS

Unions are a concept borrowed from structures and therefore follow the same syntax as structures.
However, there is major distinction between them in terms of storage. In structures, each member has
its own storage location, whereas all the members of a union use the same location. This implies that,
although a union may contain many members of different types, it can handle only one member at a
time. Like structures, a union can be declared using the keyword union as follows:

union item

{
int m;
float x:
char c;
} code;

This declares a variable code of type union item. The union contains three members, each with a
- different data type. However, we can use only one of them at a time. This is due to the fact that only
one location is allocated for a union variable, irrespective of its size.

Storage of 4 bytes
1000 1001 1002 1004

Fig. 10.7 Sharing of a storage locating by union members

320| Programming in ANSI C

The compiler allocates a piece of storage that is large enough to hold the largest variable type in
the union. In the declaration above, the member x requires 4 bytes which is the largest among the
members. Figure 10.7 shows how all the three variables share the same address. This assumes that a
float variable requires 4 bytes of storage.

To access a union member, we can use the same syntax that we use for structure members. That is,

code.m
code.x
code.c

are all valid member variables. During accessing, we should make sure that we are accessing the
member whose value is currently stored. For example, the statements such as

code.m = 379;
code.x = 7859.36;
printf("%d", code.m);

would produce erroneous output (which is machine dependent).

In effect. a union creates a storage location that can be used by any one of its members at a time.
When a different member is assigned a new value, the new value supersedes the previous member’s
value.

Unions may be used in all places where a structure is allowed. The notation for accessing a union
member which is nested inside a structure remains the same as for the nested structures.

Unions may be initialized when the variable is declared. But, unlike structures, it can be initialized
only with a value of the same type as the first union member. For example, with the preceding, the
declaration

union item abc = {100};
is valid but the declaration v
union item abc = {10.75};

is invalid. This is because the type of the first member is int. Other members can be initialized by
either assigning values or reading from the keyboard.

10.13 SIZE OF STRUCTURES

We normally use structures, unions, and arrays to create variables of large sizes. The actual size of
these variables in terms of bytes may change from machine to machine. We may use the unary opera-
tor sizeof to tell us the size of a structure (or any variable). The expression

sizeof(struct x)

will evaluate the number of bytes required to hold all the members of the structure x. If'y is a simple
structure variable of type struct x, then the expression

sizeof(y)

would also give the same answer. However, if y is an array variable of type struct x, then
sizeof(y)
would give the total number of bytes the array y requires.

Structures and Unions |321

This kind of information would be useful to determinq the number of records in a database. For
example, the expression
sizeof(y)/sizeof(x)

would give the number of elements in the array y.

10.14 BIT FIELDS sl R

So far, we have been using integer fields of size 16 bits to store data. There are occasions where data
items require much less than 16 bits space. In such cases. we waste memory space. Fortunately, C
permits us to use small bit fields to hold data items and thereby to pack several data items in a word
of memory. Bit fields allow direct manipulation of string of a string of preselected bits as if it repre-
sented an integral quantity.

A bit field is a set ot adjacent bits whose size can be from 1 to 16 bits in length. A word can
therefore be divided into a number of bit fields. The name and size of bit fields are defined using a
structure. The general form of bit field definition is;

struct tag-name

{
data-type namel: bit-length;
data-type name2: bit-length;

data-type nameN: bit-length;
}

The data-type is either int or unsigned int or signed int and the bir-length is the number of bits
used for the specified name. Remember that a signed bit field should have at least 2 bits (one bit for
sign). Note that the field name is followed by a colon. The bit-length is decided by the range of value
to be stored. The largest value that can be stored is 2" ', where n is bit-length.

The internal representation of bit fields is machine dependent. That is, it depends on the size ofint
and the ordering of bits. Some machines store bits from left to right and others from right to left. The
sketch below illustrates the layout of bit fields, assuming a 16-bit word that is ordered from right to
left.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x I

v NG G |
e ’Y"-”") M ——— e

——

name N e name 2 name 1

There are several specific points to observe:
1. The first field always starts with the first bit of the word.
2. A bit field cannot overlap integer boundaries. That is, the sum of lengths of all the fields in a
structure should not be more than the size of a word. In case, it is more, the overlapping field
1s automatically forced to the beginning of the next word.

322} Programming in ANSIC

3. There can be unnamed fields declared with size. Example:
Unsigned bir-length
Such fields provide padding within the word.
4. There can be unused bits in a word.
5. We cannot take the address of a bit field variable. This means we cannot use scanf to read
values into bit fields. We can neither use pointer to access the bit fields.
6. Bit fields cannot be arrayed.
7. Bit fields should be assigned values that are within the range of their size. If we try to assign
larger values, behaviour would be unpredicted.
Suppose, we want to store and use personal information of employees in compressed form, this can
be done as follows:
struct personal
{
unsigned sex
unsigned age
unsigned m_status
unsigned children
unsigned
} emp;
This defines a variable name emp with four bit fields. The range of values each field could have is
follows:

FENRVS R

Bit field Bit length Range of value
sex 1 Oorl

age 7 0or127(2"-1)
m_status] Oorl

children 3 0to7(2°-1)

Once bit fields are defined, they can be referenced just as any other structure-type data item would
be referenced. The following assignment statements are valid.
emp.sex = 1;
emp.age = 50;
Remember, we cannot use scanf to read values into a bit field. We may have to read into a tempo-
rary variable and then assign its value to the bit field. For example:
scanf(%d %d", &AGE,&CHILDREN);
emp.age = AGE;
emp.children = CHILDREN;
One restriction in accessing bit fields is that a pointer cannot be used. However, they can be used
in normal expressions like any other variable. For example:
sum = sum + emp.age;
if(emp.m_status).;
printf("%d\n", emp.age);
are valid statements. .
It is possible to combine normal structure elements with bit field elements. For example:

Structures and Unions |323

struct personal

{
char name[20]; /* normal variable */
struct addr address; /* structure variable */
unsigned sex : 1;
unsigned age : 7;

}

emp[100];

This declares emp as a 100 element array of type struct personal. This combines normal variable
name and structure type variable address with bit fields.
Bit fields are packed into words as they appear in the definition. Consider the following definition.

struct pack

{
unsigned a:2;
int count;
unsigned b : 3;
}s

Here, the bit field a will be in one word, the variable count will be in the second word and the bit
field b will be in the third word. The fields a and b weuld not get packed into the same word.

Just Remember

#
&

BBy BR B B OB

Remember to place a semicolon at the end of definition of structures and unions.
We can declare a structure variable at the time of definition of a structure by
placing it after the closing brace but before the semicolon.

Do not place the structure tag name after the closing brace in the definition. That
will be treated as a structure variable. The tag name must be placed before the
opening brace but after the keyword struct.

When we use typedef definition, the fype_name comes after the closing brace
but before the semicolon.

We cannot declare a variable at the time of creating a typedef definition. We
must use the fype_name to declare a variable in an independent statement.

It is an error to use a structure variable as a member of its own struct type
structure.

Assigning a structure of one type to a structure of another type is an error.
Declaring a variable using the tag name only (without the keyword struct) is an
error.

[t is an error to compare two structure variables.

It is illegal to refer to a structure member using only the member name.

When structures are nested, a member must be qualified with all levels of struc-
tures nesting it.

324| Programming in ANSIC

#3 When accessing a member with a pointer and dot notation, parentheses are re-
quired around the pointer, like (*ptr).number.

#5 The selection operator (—>) is a single token. Any space between the symbols -
and > is an error.

& When using scanf for reading values for members, we must use address operator
& with non-string members.

&y Forgetting to include the array subscript when referring to individual structures
of an array of structures is an error.

#5 A union can store only one of its members at a time. We must exercise care in
accessing the correct member. Accessing a wrong data is a logic error.

#v Itisan error to initialize a union with data that does not match the type of the first
member.

Always provide a structure tag name when creating a structure. It is convenient
to use tag name to declare new structure variables later in the program.

#3 Use short and meaningful structure tag names.

& Avoid using same names for members of different structures (although it is not
illegal).

#2 Passing structures to functions by pointers is more efficient than passing by
value. (Passing by pointers are discussed in Chapter 11.)

#3 We cannot take the address of a bit field. Therefore, we cannot use scanf to read
values in bit fields. We can neither use pointer to access the bit fields.

#v Bit fields cannot be arrayed.

CASE STUDY

Book Shop Inventory

A book shop uses a personal computer to maintain the inventory of books that are being sold at the
shop. The list includes details such as author, title, price, publisher, stock position, etc. Whenever a
customer wants a book, the shopkeeper inputs the title and author of the book and the system replics
whether it is in the list or not. If' it is not, an appropriate message is displayed. 1f book is in the list,
then the system displays the book details and asks for number of copies. If the requested copies are
available, the total cost of the books is displayed; otherwise the message “Required copies not in
stock™ is displayed.

A program to accomplish this is shown in Fig. 10.8. The program uses a template to define the
structure of the book. Note that the date of publication, a member of record structure, is also defined
as a structure. :

When the title and author of a book are specified, the program searches for the book in the list
using the function

look _up(table, sl, s2, m)

The parameter table which receives the structure variable book is declared as type struct record.
The parameters s1 and s2 receive the string values of title and author while m receives the total
number of books in the list. Total number of books is given by the expression

Structures and Unions |325

sizeof(book)/sizeof(struct record)

The search ends when the book is found in the list and the function returns the serial number of the
book. The function returns —1 when the book is not found. Remember that the serial number of the
first book in the list is zero. The program terminates when we respond “NO” to the question

Do you want any other book?

Note that we use the function
get(string)

to get title, author, etc. from the terminal. This enables us to input strings with spaces such as “C
Language”. We cannot use scanf to read this string since it contains two words.

Since we are reading the quantity as a string using the get(string) function, we have to convert it
to an integer before using it in any expressions. This is done using the atoi() function.

Programs
#include <stdio.h>
#include <string.h>
struct record

{
char author{20];
char title[30];
float price;
struct
{
char month[10];
int year;
}
date;
char publisher[10];
int quantity;
}.

int Took_up(struct record table[],char s1[],char s2[],int m);

void get (char string []);

main()

{

char title{30], author[20];

int index, no_of records;

char response[10], quantity[10];

struct record book[] = {

{"Ritche","C Language",45.00,"May",1977,"PHI",10},

{"Kochan","Programming in C",75.50,"July",1983, "Hayden",5},

{"Balagurusamy","BASIC",30.00,"January",1984,"TMH",0},

{“Balagurusamy”,"COBOL",60.00,"December",1988,”Macm111an",25}
}s

no_of records = sizeof(book)/ sizeof(struct record);

326| Programming in ANSIC

do

{
printf("Enter title and author name as per the list\n");
printf("“\nTitle: ")
get(title);
printf("Author: ");
get{author);
index = look up(book, title, author, no_of_records);
if(index != -1) /* Book found */

{
printf{"\n%s %s %.2f
book[index] .
book[index] .
book[index].

%s %d %s\n\n",
author,
title,
price,

book[index].
book[index].
book[index].

date.month,
date.year,
publisher);

printf("Enter number
get(quantity);
if(atoi(quantity) < book[index].quantity)

of copies:");

printf("Cost of %d copies = %.2f\n",atoi(quantity),

book[index].price * atoi(quantity));
else

printf("\nRequired copies not in stock\n\n");

}

else
printf("\nBook not in list\n\n");

printf("\nDo you want any other book? (YES / NO):");
get(response);
}
while(response[0] == 'Y' || response[0] == 'y');
printf("\n\nThank you. Good bye!\n");
!
void get(char string [])
{
char
int
do
{

cs

i 0;

¢ = getchar();
string[i++] = c;
}
while(c t= "\n');

Structures and Unions |327

string[i-1] = '\0';
}

int look_up(struct record table[],char s1[],char s2[],int m)
{
int i3
for(i = 0; 1 <m; i++)
if(strcmp(sl, table[i].title) == 0 &&
strcmp(s2, table[i].author) == 0)
return(i); /* book found */
return(-1); /* book not found */

}
Output

Enter title and author name as per the list
Title: BASIC

Author: Balagurusamy

Balagurusamy BASIC 30.00 January 1984 TMH

Enter number of copies:5

Required copies not in stock

Do you want any other book? (YES / NO):y

Enter title and author name as per the list
Title: CoBOL

Author: Balagurusamy

Balagurusamy COBOL 60.00 December 1988 Macmillan

Enter number of copies:7
Cost of 7 copies = 420.00

Do you want any other book? (YES / NO):y
Enter title and author name as per the list
Title: C Programming

Author: Ritche

Book not in list
Do you want any other book? (YES / NO):n

" Thank you. Good bye!

=

Fig. 10.8 Program of bookshop inventory

328 l Programming in ANSI C

REVIEW QUESTIONS

10.1 State whether the following statements are true or false.

(a)
(b)
(c)
(d)
(e)

()
(2)
(h)

(i)
)

(k)

M
(m)
(n)
(0)

A struct type in C is a built-in data type.

The tag name of a structure is optional.

Structures may contain members of only one data type.

A structure variable is used to declare a data type containing multiple fields.

It is legal to copy a content of a structure variable to another structure variable of the
same type.

Structures are always passed to functions by printers.

Pointers can be used to access the members of structure variables.

We can perform mathematical operations on structure variables that contain only
numeric type members.

The keyword typedef is used to define a new data type.

Inuaccessing a member of a structure using a pointer p, the following two are equivalent:
(*p).member_name and p—> member name

A union may be initialized in the same way a structure is initialized.

A union can have another union as one of the members.

A structure cannot have a union as one of its members.

An array cannot be used as a member of a structure.

A member in a structure can itself be a structure.

10.2 Fill in the blanks in the following statements:

(a)
(b)

(¢)
(d)

(e)

A is a collection of data items under one name in which the items
share the same storage.

The name of a structure is referred toas
The selection operator —> requires the use of a to access the mem-
bers of a structure.

The variables declared in a structure definition are called its

The can be used to create a synonym for a previously defined data type.

10.3 A structure tag name abc is used to declare and initialize the structure variables of type struct
abc in the following statements. Which of them are incorrect? Why? Assume that the structure
abc has three members, int, float and char in that order.

(a)
(b)
(c)
(d)
(e)
(H
(g)
(h)

struct a,b,c;
struct abc a,b,c
abc x,y,z;

struct abc a[];
struct abc a

struct abc = b, { 1+2, 3.0, "xyz"}
struct abc ¢ = {4,5,6};
struct abc a = 4, 5.0, "xyz";

10.4 Given the declaration

struct abc a,b,c;

Structures and Unions |329

which of the following statements are legal?
(a) scanf ("%d, &a);

(b) printf ("%d", b);

(c) a = b;

(d) a =b + c;

(e) if (a>b)

10.5 Given the declaration

struct item bank
{
int number;
double cost;
}s
which of the following are correct statements for declaring one dimensional array of struc-
tures of type struct item_bank?
(a) int item bank items[10];
(b) struct items[10] item bank;
(c) struct item bank items (10);
(d) struct item bank items [10];
(e) struct items item bank [10];
10.6 Given the following declaration

typedef struct abc

{

char x;

int y;

float z[10];
} ABC;

State which of the following declarations are invalid? Why?
(a) struct abc vl;
(b} struct abc v2[10];
(c) struct ABC v3;
(d) ABC a,b,c;
(e) ABC a[101;
10.7 How does a structure differ from an array?
10.8 Explain the meaning and purpose of the following:
(a) Template
(b) structkeyword
(¢) typedefkeyword
(d) sizeof operator
(e) Tagname

330] Programmingin ANSIC

10.9 Explain what is wrong in the following structure declaration:

struct

{
int number;
float price;

.....

.....

10.10 When do we use the following?
(a) Unions
(b) Bit fields
(c) The sizeof operator
10.11 What is meant by the following terms?
(a) Nested structures
(b) Array of structures
Give a typical example of use of each of them.
10.12 Given the structure definitions and declarations

struct abc
{
int a;
float b;
b
struct xyz
{
int x;
float y;
b
abc al, a2;
xyz x1, x2;
find errors, if any, in the following statements:
(a) al = x1;
(b) abc.al = 10.75;
(¢) intm=a + x;
(d) int n = x1.x + 10;
(e) al = az2;
(f) if (a.al > x.x1) .
(g) if (al.a < x1.x) . . .
(hy if (x1 !=x2) . . .

Structures and Unions |331

PROGRAMMING EXERCISES

10.1

10.2

10.3

10.4

10.5

10.6

10.7

Define a structure data type called time_struct containing three members integer hour, inte-
ger minute and integer second. Develop a program that would assign values to the individual
members and display the time in the following form:

16:40:51

Modify the above program such that a function is used to input values to the members and
another function to display the time.
Design a function update that would accept the data structure designed in Exercise 10.1 and
increments time by one second and returns the new time. (If the increment results in 60
seconds, then the second member is set to zero and the minute member is incremented by one.
Then, if the result is 60 minutes, the minute member is set to zero and the hour member is
incremented by one. Finally when the hour becomes 24, it is set to zero.)
Define a structure data type named date containing three integer members day, month and
year. Develop an interactive modular program to perform the following tasks;

¢ To read data into structure members by a function

o To validate the date entered by another function

o To print the date in the format

April 29, 2002

by a third function.
The input data should be three integers like 29, 4, and 2002 corresponding to day, month and
year. Examples of invalid data:

31, 4, 2002 — April has only 30 days
29, 2, 2002 — 2002 is not a leap year

Design a function update that accepts the date structure designed in Exercise 10.4 to
increment the date by one day and return the new date. The following rules are applicable:
o [fthe date is the last day in a month, month should be incremented
o [fitis the last day in December, the year should be incremented
e There are 29 days in February of a leap year
Modify the input function used in Exercise 10.4 such that it reads a value that represents the
date in the form of a long integer, like 19450815 for the date 15-8-1945 (August 15, 1945)
and assigns suitable values to the members day, month and year.
Use suitable algorithm to convert the long integer 19450815 into year, month and day.
Add a function called nextdate to the program designed in Exercise 10.4 to perform the
following task;
o Accepts two arguments, one of the structure data containing the present date and the
second an integer that represents the number of days to be added to the present date.
o Adds the days to the present date and returns the structure containing the next date cor-
rectly.
Note that the next date may be in the next month or even the next year.

332
10.8

10.9

10.10

10.11

10.12

10.13

10.14

10.15

Programming in ANSI C

Use the date structure defined in Exercise 10.4 to store two dates. Develop a function that will
take these two dates as input and compares them.

e [treturns 1, if the datel is earlier than date2

e [t returns 0, if datel is later date
Define a structure to represent a vector (a series of integer values) and write a modular
program to perform the following tasks:

e To create a vector
To modity the value of a given element
To multiply by a scalar value
To display the vector in the form
(10,20,30,.......)
Add a function to the program of Exercise 10.9 that accepts two vectors as input parameters
and return the addition of two vectors.
Create two structures named metric and British’which store the values of distances. The
metric structure stores the values in metres and centimetres and the British structure stores
the values in feet and inches. Write a program that reads values for the structure variables and
adds values contained in one variable of metric to the contents of another variable of British.
The program should display the result in the format of feet and inches or metres and
centimetres as required.
Define a structure named census with the following three members:

e A character array city {] to store names

¢ A long integer to store population of the city

e A float member to store the literacy level
Write a program to do the following:

¢ To read details for S cities randomly using an array variable
To sort the list alphabetically
To sort the list based on literacy level
To sort the list based on population
To display sorted lists
Define a structure that can describe an hotel. It should have members that include the name,
address, grade, average room charge, and number of rooms.
Write functions to perform the following operations:

¢ To print out hotels of a given grade in order of charges

¢ To print out hotels with room charges less than a given value
Define a structure called cricket that will describe the following information:

player name
team name
batting average

Using cricket, declare an array player with 50 elements and write a program to read the
information about all the 50 players and print a team-wise list containing names of players
with their batting average.

Design a structure student_record to contain name, date of birth and total marks obtained.
Use the date structure designed in Exercise 10.4 to represent the date of birth.

Develop a program to read data for 10 students in a class and list them rank-wise.

11

Chapter

11

Pointers

INTRODUCTION

A pointer is a derived data type in C. It is built from one of the fundamental data types available in C.
Pointers contain memory addresses as their values. Since these memory addresses are the locations in
the computer memory where program instructions and data are stored, pointers can be used to access
and manipulate data stored in the memory.

Pointers are undoubtedly one of the most distinct and exciting features of C language. It has added
power and flexibility to the language. Although they appear little contusing and difficult to under-
stand for a beginner, they are a powertul tool and handy to use once they are mastered.

Pointers are used frequently in C, as they offer a number of benefits to the programmers. They

include:

1. Pointers are more efficient in handling arrays and data tables.

2. Pointers can be used to return multiple values from a function via function arguments.

3. Pointers permit references to functions and thereby facilitating passing of functions as
arguments to other functions.

4. The use of pointer arrays to character strings results in saving of data storage space in memory.

5. Pointers allow C to support dynamic memory management.

6. Pointers provide an efficient tool for manipulating dynamic data structures such as structures.
linked lists, queues, stacks and trees.

7. Pointers reduce length and complexity of programs.

8. They increase the execution speed and thus reduce the program execution time.

Of course, the real power of C lies in the proper use of pointers. In this chapter. we will examine
the pointers in detail and illustrate how to use them in program development. Chapter 13 examines
the use of pointers for creating and managing linked lists.

334| Programming in ANSI C
11.2 UNDERSTANDING POINTERS

The computer’s memory is a sequential collection of *storage cells’ as shown in Fig. 11.1. Each cell,
commonly known as a byvte, has a number called address associated with it. Typically, the addresses
are numbered consecutively, starting from zero. The last address depends on the memory size. A
computer system having 64 K memory will have its last address as 65.535.

Memory Cell Address
0
- 1
- i 2
I S
‘ 4
] j 5
L] 6
I
TSI — s]
i3
' 65535

Fig. 11.1 Memory organisation

Whenever we declare a variable, the system allocates, somewhere in the memory, an appropriate
location to hold the value of the variable. Since, every byte has a unique address number, this location
will have its own address number. Consider the following statement:

int quantity = 179;

This statement instructs the system to find a location for the integer variable quantity and puts the
value 179 in that location. Let us assume that the system has chosen the address location 5000 for
quantity. We may represent this as shown in Fig. 11.2. (Note that the address of a variable is the
address of the first bye occupied by that variable.)

Quantity -«—— Variable §

[179J ~—— Value

5000 ~———— Address

e o

Fig. 11.2 Representation of a variable

Pointers | 335

During execution of the program, the system always associates the name quantity with the ad-
dress 5000. (This is something similar to having a house number as well as a house name.) We may
have access to the value 179 by using either the name quantity or the address 5000. Since memory
addresses are simply numbers, they can be assigned to some variables, which can be stored in
memory, like any other variable. Such variables that hold memory addresses are called pointer vari-
ables. A pointer variable is, therefore, nothing but a variable that contains an address, which is a
location of another variable in memory.

Remember, since a pointer is a variable, its value is also stored in the memory in another location.
Suppose, we assign the address of quantity to a variable p. The link between the variables p and
quantity can be visualized as shown in Fig.11.3. The address of p is 5048.

Variable Value Address

quantity 179 T 5000
‘ P 5000 - - 5048

Fig. 11.3 Pointer variable

Since the value of the variable p is the address of the variable quantity, we may access the value
of quantity by using the value of p and therefore, we say that the variable p ‘points’ to the variable
quantity. Thus, p gets the name ‘pointer’. (We are not really concerned about the actual values of
pointer variables. They may be different every-time we run the program. What we are concerned
about is the relationship between the variables p and quantity.)

@ Underlying Concepts of Pointers)

Pointers are built on the three underlying concepts as illustrated below:

Pointer Pointer | Pointer
constants | values | variables
S 1
\\\ 4/,,/
! Pointers
T

Memory addresses within a computer are referred to as pointer constants. We
cannot change them; we can only use them to store data values. They are like
house numbers.

336| Programming in ANSI C

We cannot save the value of a memory address directly. We can only obtain the
value through the variable stored there using the address operator (&). The value
thus obtained is known as pointer value. The pointer value (i.e. the address of a
variable) may change from one run of the program to another.

Once we have a pointer value, it can be stored into another variable. The vari-
able that contains a pointer value is called a pointer variable. J

11.3 ACCESSING THE ADDRESS OF A VARIABLE

The actual location of a variable in the memory is system dependent and therefore, the address of a
variable is not known to us immediately. How can we then determine the address of a variable? This
can be done with the help of the operator & available in C. We have already seen the use of this
address operator in the scanf function. The operator & immediately preceding a variable returns the
address of the variable associated with it. For example, the statement
p = &quantity;
would assign the address 5000 (the location of quantity) to the variable p. The & operator can be
remembered as ‘address of .
The & operator can be used only with a simple variable or an array element. The following are
illegal use of address operator:
1. &125 (pointing at constants),
2. int x[10];
&x (pointing at array names).
3. &(x+y) (pointing at expressions).
If x is an array, then expressions such as
&x|[0] and &x|it+3]

are valid and represent the addresses of Oth and (i+3)th elements of x.

Example 11.1| Write a program to print the address of a variable along with its value.

The program shown in Fig. 11.4, declares and initializes four variables and then prints out these
values with their respective storage locations. Notice that we have used %u format for printing ad-
dress values. Memory addresses are unsigned integers.

Program

main()

{
char a;
int X3
float p, q;
a = 'A';
x = 125;

Pointers | 337

p = 10.25, q = 18.76;

printf("%c is stored at addr
printf("%d is stored at addr
printf("%f is stored at addr
printf("%f is stored at addr

An", a, &a);
An', o x, &x);
An', p, &p);
An", g, &q);

oy
=

ng
%

NN
c o

o
o

}

Output

A is stored at addr 4436.

125 is stored at addr 4434.
10.250000 is stored at addr 4442.
18.760000 is stored at addr 4438.

Fig. 11.4 Accessing the address of a variable

11.4 DECLARING POINTER VARIABLES

In C, every variable must be declared for its type. Since pointer variables contain addresses that
belong to a separate data type, they must be declared as pointers before we use them. The declaration
of a pointer variable takes the following form:

duta _(ype *pt_name:

This tells the compiler three things about the variable pt_name.
1. The asterisk (*) tells that the variable pt_name is a pointer variable.
2. pt_name needs a memory location.
3. pt_name points to a variable of type data_type.

For example,

int *p; /* integer pointer */

declares the variable p as a pointer variable that points to an integer data type. Remember that the
type int refers to the data type of the variable being pointed to by p and not the type of the value of the
pointer. Similarly, the statement
float *x; / * float pointer */
declares x as a pointer to a floating-point variable.
The declarations cause the compiler to allocate memory locations for the pointer variables p and

x. Since the memory locations have not been assigned any valués, these locations may contain some
unknown values in them and therefore they point to unknown locations as shown:

int *p; Pl ?2{— 2
WHJ

contains points to
garbage unknown location

338 | Programming in ANSI C

@ Pointer Declaration Style)

Pointer variables are declared similar to normal variables except for the addition
of the unary * operator. This symbol can appear anywhere between the type
name and the printer variable name. Programmers use the following styles:

int* p; /* style 1 */
int *p; /* style 2 */
int * p; /* style 3 */

However the style2 is becoming increasingly popular due to the following rea-
sons:

1. This style is convenient to have multiple declarations in the same statement.
Example:

int *p, x, *q;

2. This style matches with the format used for accessing the target values. Exam-
ple:

int x, *p, v;

x = 10;

p=2&x;

y = *p; /* accessing x through p */
p = 20; / assigning 20 to x */

We use in this book the style 2, namely,
R J

11.5 INITIALIZATION OF POINTER VARIABLES

The process of assigning the address of a variable to a pointer variable is known as initialization. As
pointed out earlier, all uninitialized pointers will have some unknown values that will be interpreted
as memory addresses. They may not be valid addresses or they may point to some values that are
wrong. Since the compilers do not detect these errors, the programs with uninitialized pointers will
produce erroneous results. It is therefore important to initialize pointer variables carefully before
they are used in the program.
Once a pointer variable has been declared we can use the assignment operator to initialize the

variable. Example:

int quantity;

int *p; /* declaration */

p = &quantity; /* initialization */
We can also combine the initialization with the declaration. That is,

int *p = &quantity;

Pointers |339

is allowed. The only requirement here is that the variable quantity must be declared before the
initialization takes place. Remember, this is an initialization of p and not *p.

We must ensure that the pointer variables always point to the corresponding type of data. For
example,

float a, b;

int x, *p;

p = &a; /* wrong */
b = *p;

will result in erroneous output because we are trying to assign the address ot a float variable to an
integer pointer. When we declare a pointer to be of inttype, the system assumes that any address that
the pointer will hold will peint to an integer variable. Since the compiler will not detect such errors,
care should be taken to avoid wrong pointer assignments.

It is also possible to combine the declaration of data variable, the declaration of pointer variable
and the initialization of the pointer variable in one step. For example,

int x, *p = 8&x; /* three in one */
is perfectly valid. It declares x as an integer variable and p as a pointer variable and then initializes
p to the address of x. And also remember that the target variable x is declared first. The statement
int *p = &x, Xx;

is not valid.
We could also define a pointer variable with an initial value of NULL or 0 (zero). That is. the
following statements are valued:

int *p
int *p

NULL;
0;

With the exception of NULL and 0, no other constant value can be assigned to a pointer variable.
For example, the following is wrong:

int *p = 5360; / *absolute address */

@ Pointer Flexibility)

Pointers are flexible. We can make the same pointer to point to different data
variables in different statements. Example;

intx,y, z *p;

340' Programming in ANSI C

We can also use different pointers to point to the same data variable. Example.
int x; - - o
&x: P1 p2 P3
int *p2 = &x; AN 7
int *p3 = &x;)

|
R ¢/
(g . * J

11.6 ACCESSING A VARIABDLE THROUGH IS5 POINTER

int *p1

1

i

il

Once a pointer has been assigned the address of a variable, the question remains as to how to access
the value of the variable using the pointer. This is done by using another unary operator * (asterisk),
usually known as the indirection operator. Another name for the indirection operator is the
dereferencing operator. Consider the following statements:

int quantity, *p, n;
quantity = 179;

p = &quantity;

n = *p;

The first line declares quantity and n as integer variables and p as a pointer variable pointing to
an integer. The second line assigns the value 179 to quantity and the third line assigns the address of
quantity to the pointer variable p. The fourth line contains the indirection operator *. When the
operator * is placed before a pointer variable in an expression (on the right-hand side of the equal
sign), the pointer returns the value of the variable of which the pointer value is the address. In this
case, *p returns the value of the variable quantity. because p is the address of quantity. The * can be
remembered as ‘value at address’. Thus the value of n would be 179. The two statements

p = &quantity;
n = *p;

are equivalent to
n = *&quantity;

which in turn is equivalent to
n = quantity;

In C, the assignment of pointers and addresses is always done symbolically, by means of symbolic
names. You cannot access the value stored at the address 5368 by writing *5368. It will not work.
Example 11.2 illustrates the distinction between pointer value and the value it points to.

Example 11.2| Write a program fo illustrate the use of indirection operator ™' fo ac-
cess the value pointed to by a printer.

The program and output are shown in Fig.11.5. The program clearly shows how we can access the
value of a variable using a pointer. You may notice that the value of the pointer ptr is 4104 and the
value it points to is 10. Further, you may also note the following equivalences:

Pointers l 341
X = *(&x) = *ptr =y

&x = &*ptr
Program
main()
{
int X, Y
int *ptr;
x = 10;
ptr = &x;
y = *ptr;

printf("Value of x is %d\n\n",x);

printf("%d is stored at addr %Su\n", x, &x);
printf("%d is stored at addr %u\n", *&x, &x);
printf("%d is stored at addr Zu\n", *ptr, ptr);
printf("%d is stored at addr %u\n", ptr, &ptr);
printf("%d is stored at addr %u\n", y, &y);
*ptr = 25;

printf("\nNow x = %d\n",x);

}

Output
Value of x is 10
10 is stored at addr 4104
10 is stored at addr 4104
10 is stored at addr 4104
4104 is stored at addr 4106
10 is stored at addr 4108
Now x = 25

Fig. 11.5 Accessing a variable through its pointer

The actions performed by the program are illustrated in Fig. 11.6. The statement ptr = &x assigns
the address of X to ptr and y = *ptr assigns the value pointed to by the pointer ptr toy.
Note the use of the assignment statement

*ptr = 25;

This statement puts the value of 25 at the memory location whose address is the value of ptr. We
know that the value of ptr is the address of x and therefore the old value of x is replaced by 25. This,
in effect, is equivalent to assigning 25 to x. This shows how we can change the value of a variable
indirectly using a pointer and the indirection operator.

342 I Programming in ANSI C

Stage Values in the storage celis and their addresses ;
) |
X y ptr ‘
[I t
! Declaration [
| 4104 4108 4106~~~ address
x=10 .10 | i
4104 4108 4106 7 address
ptr = &x 10 — 4104
i
4104 4108 i 4106 ~<—--- address
L
R - —
y=tprr 10 10 1 4104 |
| e L |
4104 4108 4106 <«—— address
----——— pointer to x ‘;
T 1 o] T
“ptr = 25 B ; 10 | | 4104
| ! j {
4104 4108 4106

Fig. 11.6 Illustration of pointer assignments

i1.7 CHAIN OF POINTERS

It is possible to make a pointer to point to another pointer, thus creating a chain of pointers as shown.
p2 p1 variable
— LA
address 2 l»—‘—* address 1 l» - *

Here, the pointer variable p2 contains the address of the pointer variable p1, which points to the
location that contains the desired value. This is known as multiple indirections.

A variable that is a pointer to a pointer must be declared using additional indirection operator
symbols in front of the name. Example:

int **p2;

This declaration tells the compiler that p2 is a pointer to a pointer of int type. Remember, the
pointer p2 is not a pointer to an integer, but rather a pointer to an integer pointer.

We can access the target value indirectly pointed to by pointer to a pointer by applying the indirec-
tion operator twice. Consider the following code:

Pointers |343

main ()
{
int x, *pl, **p2;
x = 100;
pl = &x; /* address of x */
p2 = &pl /* address of pl*/

printf ("%d", **p2);
}

This code will display the value 100. Here. p1 is declared as a pointer to an integer andp2asa
pointer to a pointer to an integer.

118 POINTER EXPRESSIONS

Like other variables, pointer variables can be used in expressions. For example, if pl and p2 are
properly declared and initialized pointers, then the following statements are valid.

y = *pl * *p2; same as (*pl) * (*p2)

sum = sum + *pl;

z = 5% — *p2/ *pl; same as (5 * (- (*p2)))/(*pl)
*p2 = *p2 + 10;

Note that there is a blank space between / and * in the item3 above. The following is wrong.
z = 5% — *p2 /*pl;
The symbol /* is considered as the beginning of a comment and therefore the statement fails.
C allows us to add integers to or subtract integers from pointers, as well as to subtract one pointer
from another. pl + 4, p2-2 and p1 — p2 are all allowed. If pl and p2 are both pointers to the same

array, then p2 — p1 gives the number of elements between p1 and p2.
We may also use short-hand operators with the pointers.

pl++;
-pZ;
sum += *p2;

In addition to arithmetic operations discussed above, pointers can also be compared using the
relational operators. The expressions such as p1 > p2, pl == p2, and p1 != p2 are allowed. How-
ever, any comparison of pointers that refer to separate and unrelated variables makes no sense. Com-
parisons can be used meaningfully in handling arrays and strings.

We may not use pointers in division or multiplication. For example, expressions such as

pl/p2orpl*p2orpl/3

are not allowed. Similarly, two pointers cannot be added. That is, pl + p2 is illegal.

[Example 11.3| Write a program to illustrate the use of pointers in arithmetic opera-
fions.

The program in Fig.11.7 shows how the pointer variables can be directly used in expressions. It also
illustrates the order of evaluation of expressions. For example, the expression

344' Programming in ANSI C

4* —*p2 /*p1 + 10
is evaluated as follows:
((4 * (=(*p2))) / (*p1)) + 10

When *pl = 12 and *p2 = 4, this expression evaluates to 9. Remember, since all the variables are
of type int, the entire evaluation is carried out using the integer arithmetic.

Program

main()

{
int a, b, *pl, *p2, x, vy, z;
a = 12;
b = 4
pl = &a;
p2 = &b;
X = *pl * *p2 - 6;
y = 4* - *p2 / *pl + 10;

printf("Address of a = %u\n", pl);
printf("Address of b = %u\n", p2);
printf("\n");
printf("a = %d,
printf("x = %d,
*p2 = *p2 + 3;
*pl = *p2 - 5;
z = *pl * *p2 - 6;

printf("\na = %d, b = %d,", a, b);
printf(" z = %d\n", 2);

b = %d\n", a, b);
y = %d\n", x, y);

}

Output
Address of a = 4020
Address of b = 4016
a=12, b =4
x =42, y =9
a=2,b=17,2z2=28

Fig. 11.7 Evaluation of pointer expressions

119 POINTER IMNCEEM - W05 AW SCALE FACTOR

We have seen that the pointers can be incremented like

Pointers | 345

and so on. Remember, however, an expression like
pl++;
will cause the pointer p1 to point to the next value of its type. For example, if p1 is an integer pointer
with an initial value, say 2800, then after the operation pl = p1 + 1, the value of p1 will be 2802, and
not 2801. That is, when we increment a pointer, its value is increased by the ‘length’ of the data type
that it points to. This length called the scale factor.
For an IBM PC, the length of various data types are as follows:

characters 1 byte

integers 2 bytes
floats 4 bytes
long integers 4 bytes
doubles 8 bytes

The number of bytes used to store various data types depends on the system and can be found by
making use of the sizeof operator. For example, if x is a variable, then sizeof(x) returns the number of
bytes needed for the variable. (Systems like Pentium use 4 bytes for storing integers and 2 bytes for
short integers.)

@ Rules of Pointer Operations)

The following rules apply when performing operations on pointer variables.

A pointer variable can be assigned the address of another variable.

A pointer variable can be assigned the values of another pointer variable.

A pointer variable can be initialized with NULL or zero value.

A pointer variable can be pre-fixed or post-fixed with increment or decre-

ment operators. '

An integer value may be added or subtracted from a pointer variable.

6. When two pointers point to the same array, one pointer variable can be sub-
tracted from another.

7. When two pointers point to the objects of the same data types, they can be
compared using relational operators.

8. A pointer variable cannot be multiplied by a constant.

9. Two pointer variables cannot be added.
) 10. A value cannot be assigned to an arbitrary address (i.e &x = 10; is illegal). J

B R N

(2]

1110 POINTERS AND ARRAYS .
When an array is declared, the compiler allocates a base address and sufficient amount of storage to
contain all the elements of the array in contiguous memory locations. The base address is the location
of the first element (index 0) of the array. The compiler also defines the array name as a constant
pointer to the first element. Suppose we declare an array x as follows:

int x[5] = {1, 2, 3, 4, 5};

346] Programmingin ANSIC

Suppose the base address of x is 1000 and assuming that each integer requires two bvtes, the five
elements will be stored as follows:

Elements — > x[0] x[1] x[2] x(3] x[4]
Value o= i 1 2 3 4 5 I
Address - > 1000 1002 1004 1006 1008

A

Lo Base address

The name x is defined as a constant pointer pointing to the first element. x[0] and therefore the
value of x is 1000, the location where x[0] is stored. That is.
x = &[0] = 1000
If we declare p as an integer pointer, then we can make the pointer p to point to the array x by the
following assignment:
p = X3

This is equivalent to

p = &x[0];

Now, we can access every value of X using p++ to move from one element to another. The rela-
tionship between p and x is shown as:

p = &x[0] (= 1000)

pt1 = &x[1] (= 1002)
pt2 = &x[2] (= 1004)
p+3 = &x[3] (= 1006)
pt4 = &x[4] (= 1008)

Y ou may notice that the address of an element is calculated using its index and the scale factor of
the data type. For instance,

address of x|3] = base address + (3 x scale factor of int)
= 1000 + (3 x 2) = 1006
When handling arrays, instead of using array indexing, we can use pointers to access array ele-
ments. Note that *(p+3) gives the value of x[3]. The pointer accessing method is much faster than
array indexing.
The example 11.4 illustrates the use of pointer accessing method.

-

LE_xampIe 11.4] Write a program using pointers to compute the sum of all elements
stored in an array.

The program shown in Fig. 11.8 illustrates how a pointer can be used to traverse an array element.
Since incrementing an array pointer causes it to point to the next element. we need only to add one to
p each time we go through the loop.

Pointers

| 347

Program
main()
{
int *p, sum, 1i;
int x[5] = {5,9,6,3,7};
i = 0;
p = X3 /* initializing with base address of x */
printf("Element Value Address\n\n");
while(i < 5)
{
printf(" x[%d] %d %u\n", i, *p, p);
sum = sum + *p; /* accessing array element */
it+, pt+; /* incrementing pointer */
}
printf("\n Sum
printf("\n &x[0]
printf("\n p

"

%d\n", sum);
u\n", &x[0]);
su\n", p);

I

Output
Element Value Address
x[0] 5 166
x[1] 9 168
x[2] 6 170
x[3] 3 172
x [4] 7 174
Sum = 55
&x[0] = 166
) = 176

Fig. 11.8 Accessing one-dimensional array elements using the pointer

It is possible to avoid the loop control variable i as shown:

p = X;

while(p <= &x[4])
{

sum += *p;

ptt+;

Here. we compare the pointer p with the address of the last element to determine when the array

has been traversed.

Pointers can be used to manipulate two-dimensional arrays as well. We know that in a one-dimen-

sional array x, the expression

348 I Programming in ANSI C

*(x+i) or *(p+i)
represents the element x[i]. Similarly, an element in a two-dimensional array can be represented by
the pointer expression as follows:
((at+i)+j) or *(*(p+i)+j)
Columns
0 1 2 3 4 5

i
0 ! P
" L
1 i
Rows 2 | i
3
et EEaes pe e e
p+td — > 4 | 40 [4.3 e < p+4
P ! [J
5
.6 ~— p+6
P+a) pra)r3—
p ————» pointer to first row
p+i —-——> pointer to ith row
*(p +i) - pointer to first element in the ith row
pti)+j ——-—» pointer to jth element in the ith row
(p+i)+)) - value stored in the cel! (i,j)

(ith row and jth column.

Fig. 11.9 Pointers to two-dimensional arrays

Figure 11.9 illustrates how this expression represents the element a[i]{j]. The base address of the
array a is &a[0]{0] and starting at this address, the compiler allocates contiguous space for all the
elements, row-wise. That is, the first element of the second row is placed immediately after the last
element of the first row, and so on. Suppose we declare an array a as follows:

int a[3][4] = { {15,27,11,35},

{22,19,31,17},
{31,23,14,36}
};
The elements of a will be stored as:
~— row0 —>=— row1 —>~— row2 —ﬁ

PV R I A U
\—»-E 15T27 M l 35122119 {31 |17 |31 23 114 |36
: S i : . gt

)
L address = &a[0] [0]

Pointers |349

If we declare p as an int pointer with the initial address of &a[0][0], then
ali]fj] is equivalent to *(p+4 x i+))
You may notice that, if we increment i by 1. the p is incremented by 4. the size of each row. Then
the element a[2][3] is given by *(p+2 x 4+3) = *(p+11).
This is the reason why, when a two-dimensional array 1s declared, we must specity the size of each
row so that the compiler can determine the correct storage mapping.

L1 P(}IN'I‘ERS AND CHARACTER STRINGS

We have seen in Chapter 8 that strings are treated like character arrays and therefore they are de-
clared and initialized as follows:

char str [5] = "good";
The compiler automatically inserts the null character \0” at the end of the string. C supports an
alternative method to create strings using pointer variables of type char. Example:
char *str = "good";
This creates a string for the literal and then stores its address in the pointer variable str.
The pointer str now points to the first character of the string *good” as:

e e o

gl o o

]

str

I

We can also use the run-time assignment for giving values to a string pointer. Example

char * stringl;
stringl = "good";

Note that the assignment
stringl = "good";

is not a string copy, because the varjable stringl is a pointer. not a string.
(As pointed out in Chapter &, C does not support copying one string to another through the assign-
ment operation.)
We can print the content of the string string1 using either printf or puts functions as follows:
printf("%s", stringl); ‘
puts (stringl);
Remember, although stringl is a pointer to the string, it is also the name of the string. Therefore,
we do not need to use indirection operator * here.
Like in one-dimensional arrays, we can use a pointer to access the individual characters in a string.
This is illustrated by the example 11.5.

350| Programming in ANSIC

| Example ”-?J Write a program using pointers fo determine the length of a character
R " string.

A program to count the length of a string is shown in Fig.11.10. The statement
char *cptr = name;

declares eptr as a pointer to a character and assigns the address of the first character of name as the
initial value. Since a string is always terminated by the null character, the statement

while(*cptr != '\0')
is true until the end of the string is reached.

When the while loop is terminated, the pointer eptr holds the address of the null character. There-
tore. the statement

length = cptr - name;

gives the length of the string name.

A —
'D|E|L|H |\ |
‘ i '..* |

!

| i
name cptr
(54) (59)

The output also shows the address location of each character. Note that each character occupies
one memory cell (byte).

Program
main()
{
char *name;
int length;
char *cptr = name;

name = "DELHI";
printf ("%s\n", name) ;
while(*cptr 1= '\0")

{

printf("%c is stored at address su\n", *cptr, cptr);
cptr+st,
}
length = cptr - name;
printf("\nLength of the string = %d\n", Tlength);
}

Qutput

DELHI
D is stored at address 54

